Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This paper introduces Mako, a highly available, high- throughput, and horizontally scalable transactional key-value store. Mako performs strongly consistent geo-replication to maintain availability despite entire datacenter failures, uses multi-core machines for fast serializable transaction process- ing, and shards data to scale out. To achieve these properties, especially to overcome the overheads of distributed transac- tions in geo-replicated settings, Mako decouples transaction execution and replication. This enables Mako to run transactions speculatively and very fast, and replicate transactions in the background to make them fault-tolerant. The key innovation in Mako is the use of two-phase commit (2PC) speculatively to allow distributed transactions to proceed without having to wait for their decisions to be replicated, while also preventing unbounded cascading aborts if shards fail prior to the end of replication. Our experimental evaluation on Azure shows that Mako processes 3.66M TPC-C transactions per second when data is split across 10 shards, each of which runs with 24 threads. This is an 8.6×higher throughput than state-of-the-art systems optimized for geo-replication.more » « lessFree, publicly-accessible full text available July 7, 2026
- 
            This paper introduces Mako, a highly available, highthroughput, and horizontally scalable transactional key-value store. Mako performs strongly consistent geo-replication to maintain availability despite entire datacenter failures, uses multi-core machines for fast serializable transaction processing, and shards data to scale out. To achieve these properties, especially to overcome the overheads of distributed transactions in geo-replicated settings, Mako decouples transaction execution and replication. This enables Mako to run transactions speculatively and very fast, and replicate transactions in the background to make them fault-tolerant. The key innovation in Mako is the use of two-phase commit (2PC) speculatively to allow distributed transactions to proceed without having to wait for their decisions to be replicated, while also preventing unbounded cascading aborts if shards fail prior to the end of replication. Our experimental evaluation on Azure shows that Mako processes 3.66M TPC-C transactions per second when data is split across 10 shards, each of which runs with 24 threads. This is an 8.6× higher throughput than state-of-the-art systems optimized for geo-replication.more » « lessFree, publicly-accessible full text available July 7, 2026
- 
            The continued development of the automotive industry has led to a rapid increase in the amount of waste rubber tires, the problem of “black pollution” has become more serious but is often ignored. In this study, the emission characteristics, health risks, and environmental effects of volatile organic compounds (VOCs) from a typical, recycled rubber plant were studied. A total of 15 samples were collected by summa canisters, and 100 VOC species were detected by the GC/MS-FID system. In this study, the total VOCs (TVOCs) concentration ranged from 1000 ± 99 to 19,700 ± 19,000 µg/m3, aromatics and alkanes were the predominant components, and m/p-xylene (14.63 ± 4.07%–48.87 ± 3.20%) could be possibly regarded as a VOCs emission marker. We also found that specific similarities and differences in VOCs emission characteristics in each process were affected by raw materials, production conditions, and process equipment. The assessment of health risks showed that devulcanizing and cooling had both non-carcinogenic and carcinogenic risks, yarding had carcinogenic risks, and open training and refining had potential carcinogenic risks. Moreover, m/p-xylene and benzene were the main non-carcinogenic species, while benzene, ethylbenzene, and carbon tetrachloride were the dominant risk compounds. In the evaluation results of LOH, m/p-xylene (25.26–67.87%) was identified as the most key individual species and should be prioritized for control. In conclusion, the research results will provide the necessary reference to standardize the measurement method of the VOCs source component spectrum and build a localized source component spectrum.more » « less
- 
            Ambient carbonyls are critical precursors of ozone (O3) and secondary organic aerosols (SOA). To better understand the pollution characteristics of carbonyls in Taiyuan, field samplings were conducted, and 13 carbonyls were detected in an urban site of Taiyuan for the four seasons. The total concentration of carbonyls in the atmosphere was 19.67 ± 8.56 μg/m3. Formaldehyde (7.70 ± 4.78 μg/m3), acetaldehyde (2.95 ± 1.20 μg/m3) and acetone (5.57 ± 2.41 μg/m3) were the dominant carbonyl compounds, accounting for more than 85% of the total carbonyls. The highest values for formaldehyde and acetone occurred in summer and autumn, respectively, and the lowest occurred in winter. The variations for acetaldehyde were not distinct in the four seasons. Formaldehyde and acetone levels increased obviously in the daytime and decreased at night, while acetaldehyde did not show significant diurnal variations. Higher temperature and stronger sunlight intensity could facilitate the photochemical reaction of volatile organic compounds (VOCs) and enhance the O3 levels in summer. Formaldehyde and acetaldehyde contributed 70–95% of carbonyls’ ozone formation potential (OFP) caused by carbonyls with the highest totals of 268.62 μg/m3 and 38.14 μg/m3, respectively. The highest concentrations of carbonyls from south and southwest winds in summer suggest that the coke industries in the southern Taiyuan Basin should be, firstly, controlled for the alleviation of ozone pollution.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
